Beta-delayed proton emission for ⁶⁴Se and its implications to the isospin mirror symmetry

```
P. Aguilera<sup>1</sup>, B. Rubio<sup>2</sup>, F. Molina<sup>3</sup>, J. Agramunt<sup>2</sup>, A. Algora<sup>2</sup>, V. Guadilla<sup>2</sup>,
     A. Montaner-Piza<sup>2</sup>, A.I. Morales<sup>2</sup>, S.E.A. Orrigo<sup>2</sup>, B. Blank<sup>4</sup>, P. Ascher<sup>4</sup>, M. Gerbaux<sup>4</sup>,
   T. Goigoux<sup>4</sup>, J. Giovinazzo<sup>4</sup>, S. Grévy<sup>4</sup>, T. Kurtukian Nieto<sup>4</sup>, C. Magron<sup>4</sup>, D. Nishimura<sup>5</sup>.
J. Chiba<sup>5</sup>, H. Oikawa<sup>5</sup>, Y. Takei<sup>5</sup>, S. Yagi<sup>5</sup>, D.S. Ahn<sup>6</sup>, P. Doornenbal<sup>6</sup>, N. Fukuda<sup>6</sup>, N. Inabe<sup>6</sup>,
 G. Kiss<sup>6</sup>, T. Kubo<sup>6</sup>, S. Kubono<sup>6</sup>, S. Nishimura<sup>6</sup>, Y. Shimizu<sup>6</sup>, C. Sidong<sup>6</sup>, P.A. Söderström<sup>6</sup>,
T. Sumikama<sup>6</sup>, H. Suzuki<sup>6</sup>, H. Takeda<sup>6</sup>, P. Vi<sup>6</sup>, J. Wu<sup>6</sup>, H. Sakurai<sup>5,6</sup>, Y. Fujita<sup>7</sup>, M. Tanaka<sup>7</sup>,
   W. Gelletly<sup>2,8</sup>, F. Diel<sup>9</sup>, D. Lubos<sup>10</sup>, G. de Angelis<sup>12</sup>, S. Lenzi<sup>1</sup>, D. Napoli<sup>12</sup>, C. Borcea<sup>11</sup>,
       A. Boso<sup>1</sup>, R.B. Cakirli<sup>13</sup>, E. Ganioglu<sup>13</sup>, G. de France<sup>14</sup>, S. Go<sup>15</sup>, and K. Wimmer<sup>16</sup>
        <sup>1</sup>Dipartimento di Fisica and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Italy
         <sup>2</sup>Instituto de Física Corpuscular (IFIC), CSIC-Universidad de Valencia, Valencia, Spain
                         <sup>3</sup>Chilean Nuclear Energy Commission (CCHEN), Santiago, Chile
                     <sup>4</sup>Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Bordeaux, France
                          <sup>5</sup>Department of Physics, Tokyo City University, Tokyo, Japan
                                         <sup>6</sup>RIKEN Nishina Center, Tokyo, Japan
                             <sup>7</sup>Department of Physics, Osaka University, Osaka, Japan
                              <sup>8</sup>Department of Physics, Surrey University, Surrey, UK
                       <sup>9</sup>Institute of Nuclear Physics, Universität zu Köln, Köln, Germany
              <sup>10</sup>Physics Department E-12, Technische Universität München, Müngen, Germany
         ^{11} National\ Institute\ for\ Physics\ and\ Nuclear\ Engineering,\ IFIN-HH,\ Bucharest,\ Romania
                   <sup>12</sup> Istituto Nazionale di Fisica Nucleare, Sezione di Legnaro, Legnaro, Italy
                          <sup>13</sup>Department of Physics, Istanbul University, Istanbul, Turkey
                     <sup>14</sup> Grand Accélérateur National d'Ions Lourds (GANIL), Caen, France
                <sup>15</sup>Department of Physics, Tennessee University, Tennessee, United States and
                  <sup>16</sup>Helmholtzzentrum für Schwerionenforschung (GSI), Darmstadt, Germany
```

The study of exotic proton rich nuclei is very interesting because the Q-values are very high giving acces to a number of nuclear states in the daughter nucleus, including the isobaric analog state (IAS) which carries important and very clear information about the decay. In these nuclei the lifetimes involved can be as low as ms, requiring facilities with in-flight separators where transportation times can be lowered to ~ 100 ns. We will present the results of an experiment on beta-delayed proton emission from 64 Se from the experiment NP1112-RIBF82 performed at RIBF (RIKEN, Japan). A 78 Kr beam on a Be target at 345MeV/u was used to create the nuclei, fragments were identified and separated by the BigRIPS [1] fragment separator and implanted at the zero-degree focal plane where an active stopper (WAS3ABi) [2] was placed, surrounded by a HPGe array (EURICA). We reconstructed the level scheme for all decay products of 64 Se and we could obtain the absolute value of B(GT) to daughter states. These results were compared with the mirror process of beta decay, namely the charge exchange reaction 64 Zn(3 He,t) 64 Ga [4]. In this work, we will discuss these results and its implications for mirror symmetry in the fp-shell.

- [1] T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012).
- [2] S. Nishimura *et al.*, RIKEN Accel. Progr. Rep. 46, 182 (2013).
- [3] P.-A. Sderstrin et al., Nucl. Instr. and Meth. in Physics Research B317 (2013) 649652.
- [4] F. Diel et al., Phys. Rev. C, 99 (2019), 054322.