The observation of evolution of different nuclear shapes across N,Z 28 shell closure

S. Basu^{1,2}, G. Mukherjee^{1,2}, S. Nandi¹¹, S. S. Nayak^{1,2}, S. Bhattacharyya^{1,2}, Soumik Bhattacharya^{1,12}, Shabir Dar^{1,2}, Sneha Das^{1,2}, S. Basak^{1,2}, D. Kumar^{1,2}, D. Paul^{1,2}, K.

Banerjee^{1,2}, Pratap Roy¹, S. Manna^{1,2}, Samir Kundu^{1,2}, T. K. Rana^{1,2}, R. Pandey^{1,2}, S.

Chatterjee³, R. Raut³, S. S. Ghugre³, H. Pai⁴, A. Karmakar^{4,2}, S. Chattopadhyay^{4,2}, S. Samanta⁵, S. Das Gupta⁶, P. Pallav⁶, R. Banik⁷, S. Rajbanshi⁸, S. Ali⁹, and Q. B. Chen¹⁰

¹Variable Energy Cyclotron Centre, Kolkata 700064, INDIA

²Homi Bhabha National Institute, Mumbai 400094, INDIA

³ UGC-DAE CSR, Kolkata Centre, Bidhannagar Kolkata 700098, India

⁴Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India

⁵University of Genoa, Genoa, Italy

⁶ Victoria Institution (College), Kolkata-700009, India

⁷Institute of Engineering and Management, Kolkata-700091, India

⁸Department of Physics, Presidency University, Kolkata-700073, India

⁹Government General Degree College at Pedong, Kalimpong, India

¹⁰East China Normal University, Shanghai 200241, China

¹¹Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, United States and

¹²Florida State University, Tallahassee, Florida, USA

Evolution of different nuclear shapes are primarily due to change in occupation of nucleons in different active nucleonic orbitals. Nuclei with N,Z 28 are close to doubly magic, self conjugate ⁵⁶Ni which has a soft core as compared to other doubly magic ⁴⁸Ca [1]. Their configuration space comprised of $1f_{7/2}$, $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$ and $1g_{9/2}$ orbitals. The first shell gap which is created due to the presence of spin-orbit coupling term in the nuclear Hamiltonian is 28 shell gap, which is created due to lowering of $1f_{7/2}$ orbital from upper fp space. Due to this, the particle-hole excitation across this shell gap may be possible at relatively lower excitation energies. On the other hand, $1f_{7/2}$ and $1g_{9/2}$ single-particle orbitals have large shape driving effect which can bring collectivity in the system. Also, the coupling of $2p_{3/2}$ and $1g_{9/2}$ orbitals ($\Delta j=3$ and $\Delta l=3$) can bring octupole correlation in the system. Therefore, possibilities of different nuclear shapes in this part of nuclear chart is very high. Even-even ⁵⁶Fe (Z=26, N=30) is known to have shape coexistence of prolate and oblate shapes at lower excitation [2]. Now it will be interesting to see how the shape evolves with change in occupation of nucleons from 56 Fe. With this idea in mind, an gamma ray spectroscopy experiment was performed at VECC, Kolkata using 34 MeV α beam from K-130 cyclotron on ⁵⁵Mn target to populate nuclei with 1 neutron particle (⁵⁷Fe), 1 neutron particle and 1 proton hole (⁵⁴Mn) as well as 1 proton hole (⁵⁵Mn) coupled to ⁵⁶Fe core. The deexcited γ rays were detected using 11 CS clover detectors and 1 LEPS detector placed at 3 different angles (3 including LEPS at 40°, 6 at 90° and 3 at 125°). The PIXIE-16 digitizer based data acquisition system and IUCPIX package, developed by UGC-DAE CSR Kolkata [3], was used to record and process the data. The $\gamma\gamma$ symmetric and asymmetric matrices and $\gamma\gamma\gamma$ cube were constructed to establish the level scheme and to assign spin and parity of the levels. The lifetimes of a few states were also measured using DSAM technique. The evolution of different nuclear shapes including deformed (axial and triaxial) and spherical at different excitation energies have been observed for these 3 nuclei which is caused due to the affect of odd particles on shape coexistent core. The octupole correlation has also been observed. Detailed results will be presented in the conference.

[3] S. Das et al., Nucl. Inst. Meth. Phys. Res. A 893 (2018) 138.

^[1] E.K. Johansan et al., Eur. Phys. J. A 27 (2006) 157-165.

^[2] D. E. Appelbe *et al.*, Physical Review C **62** (2000) 064314.