First observation of the $\beta 3\alpha p$ decay of ¹³O via β -delayed charged-particle spectroscopy

J. Bishop¹, G.V. Rogachev^{1,2,3}, S. Ahn⁴, M. Barbui¹, S.M. Cha⁴, E. Harris^{1,2}, C. Hunt^{1,2}, C.H. Kim⁵, D. Kim⁴, S.H. Kim⁶, E. Koshchiy¹, Z. Luo^{1,2}, C. Park⁴, C.E. Parker¹, E.C. Pollacco⁷, B.T. Roeder¹, M. Roosa^{1,2}, A. Saastamoinen¹, and D.P. Scriven^{1,2}

¹Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA ²Department of Physics & Astronomy, Texas A&M University, College Station, TX 77843, USA

³Nuclear Solutions Institute, Texas A&M University, College Station, TX 77843, USA

⁴Center for Exotic Nuclear Studies, Institute for Basic Science, 34126 Daejeon, Republic of Korea ⁵IRFU, CEA, Université Paris-Saclay, Gif-Sur-Yvette, France

⁶Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea and

⁷Department of Physics, Sungkyunkwan University (SKKU), Republic of Korea

The β -delayed proton-decay of ¹³O has previously been studied [1], but the direct observation of β -delayed 3 α p decay has not been reported. In this way, rare 3 α p events from the decay of excited states in ¹³N^{*} provide a sensitive probe of cluster configurations in ¹³N. To measure the low-energy products following β -delayed 3 α p-decay, the TexAT Time Projection Chamber [2] was employed using the one-at-a-time β -delayed charged-particle spectroscopy technique at the Cyclotron Institute, Texas A&M University. A total of 1.9×10^5 ¹³O implantations were made inside the TexAT Time Projection Chamber. 149 3 α p events were observed yielding a β delayed 3 α p branching ratio of 0.078(6)%. Four previously unknown α -decaying excited states were observed in ¹³N at 11.3 MeV, 12.4 MeV, 13.1 MeV and 13.7 MeV and the decay modes for these states were established. We demonstrate that clustering must dominate the structure of these states to exhibit the observed decay branching ratios.

[1] H. H. Knudsen et al. Phys. Rev. C 72 (2005) 044312.

[2] E. Koshchiy *et al.* NIM A, Volume **957**,(2020) 163398.