Study of nuclei beyond the proton drip line at A ~ 20 through multi-proton emission*

Z. H. Li¹, Y. Jin¹, L. Ni¹, C. Y. Niu², K. W. Brown³, H. Hua¹, A. K. Anthony^{2,4},

J. Barney^{2,4}, R. J. Charity⁵, J. Crosby^{2,4}, D. Dell'Aquila², J. M. Elson⁵, J.

Estee^{2,4}, M. Ghazali^{2,4}, G. Jhang², J. G. Li^{1,6,7}, W. G. Lynch^{2,4}, N. Michel^{6,7},

L. G. Sobotka^{5,8}, S. Sweany^{2,4}, F. C. E. Teh^{2,4}, A. Thomas⁵, C. Y. Tsang^{2,4}, M. B. Tsang^{2,4}, S. M. Wang^{9,10}, H. Y. Wu¹, C. X. Yuan¹¹, and K. Zhu^{2,4}

¹School of Physics and State Key Laboratory of Nuclear Physics and Technology,

Peking University, Beijing 100871, China

²National Superconducting Cyclotron Laboratory,

Michigan State University, East Lansing, Michigan 48824, USA

³Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

⁴Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

⁵Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA

⁶Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

⁷School of Nuclear Science and Technology,

University of Chinese Academy of Sciences, Beijing 100049, China

⁸Department of Physics, Washington University, St. Louis, Missouri 63130, USA

Institute of Modern Physics, Fudan University, Shanghai 200433, China

¹⁰FRIB Laboratory, Michigan State University,

East Lansing, Michigan 48824, USA and

¹¹Sino-French Institute of Nuclear Engineering and Technology,

Sun Yat-Sen University, Zhuhai 519082, China

Investigations into proton emissions beyond the dripline are critical for mapping the limits of nuclear stability and improving our understanding of nucleon-nucleon interactions under extreme isospin conditions.

In this talk, I will present the experimental results of newly discovered four-proton emission nuclei ¹⁸Mg and three-proton emission nuclei ²¹Al, as well as some new results related to the excited state of ¹⁹Mg.

^{*}This work was supported by the National Key R&D Program of China under Grant No. 2018YFA0404403, the National Natural Science Foundation of China under Grants No. 12035001, No. 11775003, No. 11975282, and No. 11775316, the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Grant No. DEFG02-87ER-40316, the U.S. National Science Foundation under Grant No. PHY-1565546, and the State Key Laboratory of Nuclear Physics and Technology, Peking University under Grant No. NPT2020KFY13. C. Y. N. was supported by the China Scholarship Council under Grant No. 201806010506.