The Study of Closed-Shell Proton-Emitter ¹⁵⁵Ta

<u>A. McCarter¹</u>, D.T. Joss¹, R.D. Page¹, J. Uusitalo², A.D. Briscoe²,* B. Alayed^{1,7}, K. Auranen², H. Ayatollahzadeh³, G. Beeton³, M. Birova⁶, V. Bogdanoff², J. Cubiss⁴, J. Deary³, T. Grahn², P.T. Greenlees², A. Illana²,[†] H. Joukainen², R. Julin², H. Jutila², J. Keatings³, M. Labiche⁵, M. Leino², J. Louko², M. Luoma², S. Nathaniel¹, D. O'Donnell³, J. Ojala²,* C. Page⁴, J. Pakarinen², P. Papadakis⁵, A.M. Plaza^{1,2}, P. Rakhila², J. Romero^{1,2}, P. Ruotsalainen², J. Sarén², J. Smith², C. Sullivan¹, H. Tann^{1,2}, A. Tolosa-Delgado²,[‡] E. Uusikylä², M. Venhart⁶, L. Waring¹, and G. Zimba²
¹University of Liverpool, Liverpool, United Kingdom
²University of York, York, United Kingdom
⁵STFC Daresbury, Warrington, United Kingdom
⁶Slovak Academy of Sciences, Bratislava, Slovakia and

⁷Qassim University, Buraydah, Saudi Arabia

Proton radioactivity provides a unique probe of nuclear structure far from stability and for odd-Z elements it is expected to be the decay mode that determines the limit of observability for neutron deficient nuclei. Establishing these boundaries of observability and identifying the nuclear structure at these limits is a long-standing challenge in nuclear physics. The closed neutron-shell nuclide ¹⁵⁵Ta is expected to be the most nearly spherical proton emitter and therefore a benchmark for theoretical models of this decay mode [1,2]. However, conflicting results have been reported when producing this proton emitter directly [3] and as the daughter of ¹⁵⁹Re α decays [4]. Additional interest in this nuclide comes from the possibility of a microsecond multiparticle isomer in ¹⁵⁵Ta that is analogous to those seen in its lighter isotones [5].

The aim of this work is to confirm the nature of the proton radioactivity of ¹⁵⁵Ta and to search for a possible isomeric state. The experiment was performed at the University of Jyväskylä in Finland. The ¹⁵⁵Ta nuclei were produced by fusion-evaporation reactions induced by a ⁵⁸Ni beam bombarding a ¹⁰²Pd target. The evaporation residues were separated in flight using the Mass Analysing Recoil Apparatus (MARA) [6] and implanted into a double-sided silicon strip detector (DSSD), which was used to measure proton and alpha decays. The DSSD was surrounded by an array of germanium detectors to allow isomer gamma decays to be observed. The latest results from the analysis of these data will be presented.

- [1] P. Möller *et al.*, At. Data and Nucl. Data Tables **1** (2016) 109-110.
- [2] S. Goriely *et al.*, Phys. Rev. C **75** (2007) 064312.
- [3] J. Uusitalo *et al.*, Phys. Rev. C **59** (1999) R2975.
- [4] R.D. Page *et al.*, Phys. Rev. C **75** (2007) 061302.
- [5] J.H. McNeill et al., Z. Phys. A 344 (1993) 369.
- [6] J. Sarén et al., Nucl. Inst. Methods Phys. Rev. B. 266 (2008) 4196.

^{*}University of Liverpool, Liverpool, United Kingdom [†]Universidad Complutense de Madrid, Madrid, Spain

[‡]CERN, Geneva, Switzerland