Probing isospin symmetry near the proton drip-line with β -delayed protons

<u>A.M. Rogers</u>¹, D.E.M. Hoff^{1,2}, S.M. Wang³, Z. Meisel⁴, S. Waniganeththi¹, C.J. Lister¹ P.C. Bender¹, K. Brandenburg⁴, S. Byrne¹, K. Childers^{3,5}, J.A. Clark⁶, A.C. Dombos^{3,5}, E.R. Doucet¹, S. Jin^{3,5}, R. Lewis^{3,5}, S.N. Liddick^{3,5}, C. Morse^{1,7}, W. Nazarewicz^{5,8}, H. Schatz^{3,5}, K. Schmidt^{3,5}, D. Soltesz⁴ and S.K. Subedi⁴

¹University of Massachusetts Lowell, Lowell MA, USA
²Lawrence Livermore National Laboratory, Livermore CA, USA
³National Superconducting Cyclotron Laboratory, East Lansing MI, USA
⁴Ohio University, Athens OH, USA
⁵Michigan State University, East Lansing MI, USA
⁶Argonne National Laboratory, Argonne IL, USA
⁷Brookhaven National Laboratory, Upton NY, USA
⁸Facilty for Rare Isotope Beams, East Lansing MI, USA

Nuclei along the N = Z line are critical to understanding the underlying symmetries of the nuclear wavefuction as well as the limits of nuclear binding. Isospin symmetry – where neutrons and protons are treated as projections of a single fermion – has proved to be remarkably robust despite being broken by electromagnetic forces and, at a significantly smaller level, by the strong interaction. A consequence of this symmetry is that bound mirror nuclei should have identical ground states, a feature we have recently investigated in both ⁷³Sr (T = 3/2) and ⁷¹Kr (T = 1/2). Additionally, nuclei at and beyond the proton drip-line are particularly important in explosive astrophysical environments, such as the *rp* process. We have recently studied ⁷³Sr [1] and ⁷¹Kr [2], as well as the proton-unbound nucleus, ⁷³Rb [3], through β -delayed proton spectroscopy which has proven to be a sensitive probe of nuclear structure. In the case of ⁷³Sr we have observed a unique breakdown of mirror symmetry while in the case of ⁷¹Kr we have sought to address a debate concerning the ground-state spins of the ⁷¹Kr/⁷¹Br mirror pair [4,5,6]. An overview of these studies will be presented as well as a discussion of future research to advance our knowledge of isospin symmetry.

[1] D.E.M. Hoff, A.M. Rogers, S.M. Wang et al., Nature **580** (2020).

- [2] S. Waniganeththi et al., Phys. Rev. C 106, 044317 (2022).
- [3] D.E.M. Hoff, A.M. Rogers, Z. Meisel et al., Phys. Rev. C 102, 045810 (2020)
- [4] M. Oinonen et al., Phys. Rev. C 56, 745 (1997).
- [5] P. Urkedal and I. Hamamoto, Phys. Rev. C 58, R1889 (1998).
- [6] S.M. Fischer et al., Phys. Rev. C 72, 024321 (2005).