Decay study of ¹¹Be

Natalia Sokołowska for the ISOLDE IS629 collaboration

Faculty of Physics, University of Warsaw, 02-093 Warszawa, Poland

In the decay of ¹¹Be, which is a one-neutron halo nucleus [1], a few channels for β delayed particle emission are open, including the proton branch, with the decay energy $Q_{\beta p} \sim 280$ keV. Since recently, this latter channel attracts a lot of interest. The branching ratio (BR) for the this process is important for the determination of the Gamow-Teller strength at high excitation energy and for testing models that predict a direct relation between βp emission and the halo structure. Indirect observations based on accelerator mass spectrometry (AMS) resulted in an upper limit for this branching of 2.2×10^{-6} [2]. In contrast, the evidence for βp emission from ¹¹Be with the probability of $1.3(3) \times 10^{-5}$ was reported by Ayyad et al. [3]. Moreover, it was suggested that a narrow resonance in ¹¹B is responsible for this process.

We made an attempt to observe directly β -delayed protons from ¹¹Be, using the Warsaw Optical Time Projection Chamber [4]. The main experiment was performed in 2018 at HIE-ISOLDE facility at CERN. A large amount of ¹¹Be ions (~ 50 mln) was implanted into the OTPC detector. A complementary measurement was performed at the LNS laboratory in Catania in order to measure the branching ratio for the β -delayed α emission channel in the same experimental conditions, which is needed for the normalisation purpose. The final results of the data analysis will be presented.

- [1] M. J. G. Borge, et al. J. Phys. G, 40, 035109 (2013).
- [2] K. Riisager et al., Eur. Phys. J. A 56, 100 (2020).
- [3] A. Ayyad et al., Phys. Rev. Lett. 13, 082501 (2019)
- [4] A. Ciemny et al. Eur. Phys. J. A 52:89 (2016).