β -delayed proton decay of ²⁷P

I. C. Stefanescu¹, L. Trache¹, A. Saastamoinen², B.

Roeder², A. Spiridon¹, A. E. Polacco³, and A. I. Stefanescu¹

¹Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Magurele, Romania

²Cyclotron Institute, Texas A&M University, College Stattion, TX 77843, USA and

³IRFU, CEA, Université Paris-Saclay, Gif-Sur-Yvette, France

Indirect methods - a combination of experimental and theoretical analyses - are well established and their use is broad in the field of Nuclear Astrophysics (NA). Information useful to determine the reaction rates of interest in different stellar environments, at very low energies (tens and hundreds of keV), can be obtained by using information obtained in experiments at higher energies. The fact that most of the important nucleosynthesis reactions involve unstable nuclei and taking into consideration the available low-energy reactions, makes the use of direct measurements unsuitable in most cases [1].

The isotope 26 Al hold a special place in the big Galaxy picture; with a half-life of $T_{1/2} \approx 0.717$ Myr it is short-lived when compared to the timescale of the Galactic chemical evolution [2]. That is why, its discovery in the interstellar medium in 1982 [3] represented a strong evidence that the nucleosynthesis is an ongoing process. However, there are still uncertainties regarding its production and destruction sites and the reaction rates involved in this processes.

We present here the results of an experiment of β -delayed proton-decay of ²⁷P performed at the Cyclotron Institute, Texas A&M University in which the resonant radiative proton capture on the first excited state of ²⁶Al, ^{26m}Al(p, γ)²⁷Si was investigated with an indirect method and using a gas detector, AstroBox2 [4]. We populated excited states in ²⁷Si through β -decay of ²⁷P, which further emit protons, the same states that would be resonances in the inverse proton capture.

New low-energy proton groups down to 150 keV (FIG 1, left) were found and their branching ratios were extracted. These are the resonances that dominate the 26m Al(p, γ)²⁷Si reaction. Additionally, a more precise half-life for the 27 P isotope was determined (FIG 1, right) and the behavior of the reaction rate of the radiative proton capture on 26m Al is explored.

FIG. 1: (left) ²⁷P β -delayed proton spectrum; (right) Decay time spectrum of ²⁷P.

- [1] C. Bertulani et al., J. Phys.: Conf. Ser 703 (2016).
- [2] Diehl, R. et al., Publ. of the Astr. Soc. of Australia 30 (2021)
- [3] Mahoney, W. A. et al., Astrophys. J., 262 (1982)
- [4] Saastamoinen, A. et al., NIM B 376,(2016)