The quest of proton emitting nuclei with the S³-LEB apparatus

```
A. de Roubin<sup>1</sup>, A. Ajayakumar<sup>2</sup>, M. Authier<sup>3</sup>, Y. Balasmeh<sup>1</sup>, A. Brizard<sup>2</sup>, F. Boumard<sup>4</sup>, L.
   Caceres<sup>2</sup>, J. F. Cam<sup>4</sup>, A. Claessenss<sup>1</sup>, S. Damoy<sup>2</sup>, P. Delahaye<sup>2</sup>, P. Desrues<sup>4</sup>, W. Dong<sup>5</sup>, A.
          Drouart<sup>3</sup>, P. Duchesne<sup>5</sup>, R. Ferrer<sup>1</sup>, X. Flechard<sup>4</sup>, S. Franchoo<sup>5</sup>, P. Gangnant<sup>2</sup>, S.
     Geldhof<sup>1</sup>, R. P. de Groote<sup>1</sup>, F. Ivandikov<sup>1</sup>, N. Lecesne<sup>2</sup>, R. Leroy<sup>2</sup>, J. Lory<sup>4</sup>, F. Lutton<sup>2</sup>,
      V. Manea<sup>5</sup>, Y. Merrer<sup>4</sup>, I. Moore<sup>6</sup>, A. Ortiz-Cortes<sup>2</sup>, B. Osmond<sup>2</sup>, J. Piot<sup>2</sup>, O. Pochon<sup>5</sup>,
      S. Raeder<sup>7,8</sup>, J. Romans<sup>1</sup>, H. Savajols<sup>2</sup>, S. Sels<sup>1</sup>, D. Studer<sup>7</sup>, E. Traykov<sup>9</sup>, J. Uusitalo<sup>6</sup>,
     C. Vandamme<sup>4</sup>, M. Vandebrouck<sup>3</sup>, P. Van den Bergh<sup>1</sup>, P. Van Duppen<sup>1</sup>, and K. Wendt<sup>7</sup>
                 <sup>1</sup>KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
                       <sup>2</sup>GANIL, CEA/DRF-CNRS/IN2P3, B.P. 55027, 14076 Caen, France
                      <sup>3</sup>IRFU, CEA, Université Paris-Saclay, F-91191 Gif sur Yvette, France
                             <sup>4</sup> Universié de Caen Normandie, ENSICAEN, CNRS/IN2P3,
                                       LPC Caen UMR6534, F-14000 Caen, France
                      <sup>5</sup> Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France <sup>6</sup> University of Jyväskylä, department of Physics,
                                     PO Box 35 (YFL), Jyväskylä FI-40014, Finland
             <sup>7</sup> Institut fur Physik. Johannes Gutenberg-Universitat Mainz, 55128 Mainz, Germany
<sup>8</sup> GSI Helmholtzzentrum fur Schwerionenforschung GmbH Planckstraße 1, Darmstadt, 64291, Germany and
                  <sup>9</sup> Université de Strasbourg, CNRS/IN2P3, IPHC, F-67037 Strasbourg, France
```

The Super Separator Spectrometer S³, coupled to the new superconducting linear accelerator SPIRAL2-LINAC, has been developed to create new opportunities for studies of heavy and super-heavy nuclei, as well as in the vicinity of the N=Z region and at the proton dripline. The nuclei of interest will be produced at the entrance of S³, using fusion-evaporation reactions, and will be separated from the intense background contamination while flying through the spectrometer. The S³-LEB (Low Energy Branch) [1,2] apparatus will sit at the focal plane of S³ and will neutralize the radioactive isotopes in a gas cell. Ground and isomeric state properties of nuclei of interest will then be studied at S³-LEB using high-resolution laser spectroscopy, decay spectroscopy and mass spectrometry.

The reaction products from S^3 will be thermalized and neutralized in the gas cell, filled with argon, and extracted as a gas jet, formed by a convergent-divergent (de-Laval) nozzle, where laser ionization spectroscopy will take place. The gas jet offers a suitable environment for high-precision laser ionization spectroscopy due to reduced Doppler and pressure broadening effects, and will provide a spectral resolution better than 300 MHz [3], while maintaining a high efficiency. This technique will enable access to nuclear spin, electromagnetic moments and nuclear charge radii measurements. Laser-ionized ions will then be guided by a series of radiofrequency quadrupoles to the PILGRIM multi-reflection time-of-flight mass spectrometer, for beam purification and/or mass measurements, or to the decay spectroscopy station, SEASON.

The S³-LEB apparatus is fully assembled and currently under commissioning at LPC Caen. Recent results from the commissioning will be presented, including the first in-gas-jet high-resolution laser spectroscopy results for stable erbium. The new S³ facility will produce neutron-deficient nuclei with unprecedented yields including proton emitting nuclei. We propose here to use the in-gas-jet laser ionization and spectroscopy techniques, as well as decay spectroscopy and mass spectrometry techniques, to determine the ground-state properties of proton emitting nuclei with an unprecedented precision.

- [1] J. Romans et~al., Atoms ${f 10}$ (2022) 21
- [2] J. Romans et al., NIM B **536** (2023) 72
- [3] R. Ferrer et al., NIM B **317** (2013) 570